image: e_519a2eefaf42_BJOERN_SBIERSKI_2021_cropped.jpg

Bjoern Sbierski

Coordinates

I am a postdoc at Tuebingen University working in condensed matter theory.
Before, I obtained my PhD under the supervision of Piet Brouwer (Thesis: On disorder effects in topological insulators and semimetals, defended May 2016), and joined the Emmy-Noether group of Christoph Karrasch at Freie Universitaet Berlin for a first postdoc. In 2019-2021, I was a Leopoldina-Postdoc with Joel Moore at the University of California, Berkeley. After that, in 2021-2023 I worked as group leader and START-fellow of the Munich Center for Quantum Science and Technology (MCQST).
eMail: bjoern.sbierski@uni-tuebingen.de
Orcid: 0000-0003-1063-2389

Group members

Open positions

Master thesis: “Pseudo-Majorana diagrammatic Monte Carlo for frustrated spin systems” topic taken

Research profile

Systems:
Methods:
Phenomena:

Publications (ordered according to arXiv submission date)

2024
  1. (35) F. Bippus, B. Schneider, B.S.: Pseudo-Majorana functional renormalization for frustrated XXZ-Z spin-1/2 models, submitted, [ArXiv:2411.18198].
  2. (34) B. Schneider, R. Burkard, B. Olmos, I. Lesanovsky, B.S.: Dipolar ordering transitions in many-body quantum optics: Analytical diagrammatic approach to equilibrium quantum spins, PRA 110, 063301 (2024), [ArXiv:2407.18156].
  3. (33) B. Schneider, B.S.: Taming spin susceptibilities in frustrated quantum magnets: Mean-field form and approximate nature of the quantum-to-classical correspondence, submitted, [ArXiv:2407.09401].
2023
  1. (32) B. Schneider, J. Reuther, M. Gonzalez, B.S., N. Niggemann: Temperature flow in pseudo-Majorana functional renormalization for quantum spins, PRB 109, 195109 (2024), [ArXiv:2312.14838].
  2. (31) T. Mueller, D. Kiese, N. Niggemann, B.S., J. Reuther, S. Trebst, R. Thomale, Y. Iqbal: Pseudo-fermion functional renormalization group for spin models (REVIEW), Rep. Prog. Phys. 87 036501 (2024), [ArXiv:2307.10359].
  3. (30) B.S., M. Bintz, S. Chatterjee, M. Schuler, N.Y. Yao, L. Pollet: Magnetism in the two-dimensional dipolar XY model, PRB 109, 144411 (2024), [ArXiv:2305.03673].
  4. (29) J. Halbinger, B. Schneider, B.S.: Spectral representation of Matsubara n-point functions: Exact kernel functions and applications, SciPost Phys. 15.5.183 (2023), [ArXiv:2304.03774].
2022
  1. (28) B. Schneider, D. Kiese, B.S.: Taming pseudo-fermion functional renormalization for quantum spins: Finite-temperatures and the Popov-Fedotov trick, PRB 106, 235113 (2022), [ArXiv:2209.13484].
2021
  1. (27) E. J. Dresselhaus, B.S., I. A. Gruzberg: Scaling collapse of longitudinal conductance near the integer quantum Hall transition, PRL 129.026801 (2022), [Editors’ suggestion] [ArXiv:2112.09847].
  2. (26) N. Niggemann, J. Reuther, B.S.: Quantitative functional renormalization for three-dimensional quantum Heisenberg models, SciPost Phys. 12, 156 (2022), [ArXiv:2112.08104].
  3. (25) B.S., M. Geier, A-P. Li, M. Brahlek, R.G. Moore, J. E. Moore, Identifying Majorana vortex modes via non-local transport, PRB 106, 035413 (2022), [ArXiv:2107.11226].
  4. (24) E. J. Dresselhaus, B.S., I. A. Gruzberg: Numerical evidence for marginal scaling at the integer quantum Hall transition, Annals of Physics 435, 168676 (2021) [ArXiv:2101.01716].
2020
  1. (23) N. Niggemann, B.S., J. Reuther: Frustrated Quantum Spins at finite Temperature: Pseudo-Majorana functional RG approach, PRB 103.104431 (2021) [ArXiv:2012.14836].
  2. (22) B.S., E. J. Dresselhaus, J. E. Moore, I. A. Gruzberg: Criticality of 2d disordered Dirac fermions in the unitary class and universality of the integer quantum Hall transition, PRL 126.076801 (2021) [ArXiv:2008.09025].
  3. (21) B.S., S. Syzranov: Non-Anderson critical scaling of the Thouless conductance in 1D, Annals of Physics 418, 168169 (2020) [ArXiv:2002.12299].
  4. (20) Z. Shi, B.S., P. W. Brouwer: Disorder correction to the minimal conductance of a nodal-point semimetal, PRB 102.024204 (2020) [ArXiv:2002.10353].
2019
  1. (19) B.S., J. Karcher, M. S. Foster: Spectrum-wide quantum criticality at the surface of class AIII topological phases: An "energy stack" of integer quantum Hall plateau transitions, PRX 10, 021025 (2020) [ArXiv:1912.06748] [see also Rice university press release].
2018
  1. (18) B.S., C. Fraeßdorf: Strong disorder in nodal semimetals: Schwinger-Dyson–Ward approach, PRB 99.020201 (2019), [ArXiv:1808.09860].
  2. (17) B.S., C. Karrasch: Topological invariants for the Haldane phase of interacting SSH chains -- a functional RG approach, PRB 98.165101 (2018), [ArXiv:1805.00839].
  3. (16) L. Markhof, B.S., V. Meden, C. Karrasch: Detecting phases in one-dimensional many-fermion systems with the functional renormalization group, PRB 97.235126 (2018), [ArXiv:1803.00272]
2017
  1. (15) J. Behrends, F. Kunst, B.S.: Transversal magnetotransport in Weyl semimetals: Exact numerical approach, PRB 97.064203 (2018), [ArXiv:1801.00126].
  2. (14) B.S., C. Karrasch: Second order functional renormalization group approach to one-dimensional systems in real and momentum space, PRB 96.235122 (2017), [ArXiv:1710.06373].
  3. (13) S.-H. Lin, B.S., F. Dorfner, C. Karrasch, F. Heidrich-Meisner: Many-body localization of spinless fermions with attractive interactions in one dimension, SciPost Phys. 4, 002 (2018), [ArXiv:1707.06759].
  4. (12) B.S., K. A. Madsen, P. W. Brouwer, C. Karrasch: Quantitative analytical theory for disordered nodal points, PRB 96.064203 (2017), [ArXiv:1704.08457]
2016
  1. (11) M. Trescher, B.S., P. W. Brouwer, E. J. Bergholtz: Tilted Disordered Weyl Semimetals, PRB 95.045139 (2017), [ArXiv:1611.02513].
  2. (10) B.S., K. Decker, P. W. Brouwer: Weyl node with random vector potential, PRB 94.220202(R) (2016), [Editors’ suggestion] [ArXiv:1606.09209].
  3. (9) B.S., M. Trescher, E. J. Bergholtz, P. W. Brouwer: Disordered double Weyl node: Comparison of transport and density-of-states calculations, PRB 95.115104, (2017) [ArXiv:1606.06941].
  4. (8) B.S., M. Schneider, P. W. Brouwer: The weak side of strong topological insulators, PRB 93.161105(R) (2016), [ArXiv:1602.03443]
2015
  1. (7) B.S., E. J. Bergholtz, P. W. Brouwer: Quantum critical exponents for a disordered three-dimensional Weyl node, PRB 92.115145 (2015) [ArXiv:1505.07374].
  2. (6) M. Trescher, B.S., P. W. Brouwer, E. J. Bergholtz: Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones, PRB 91.115135 (2015) [ArXiv:1501.04034] (Featured in the ’Journal Club for Condensed Matter Physics’ in a commentary by Carlo Beenakker.)
2014 and earlier
  1. (5) B.S., G. Pohl, E. J. Bergholtz, P. W. Brouwer: Quantum Transport of Disordered Weyl Semimetals at the Nodal Point, PRL 113.026602 (2014) [ArXiv:1402.6653]
  2. (4) B.S. and P.W. Brouwer: Z2 phase diagram of three-dimensional disordered topological insulators via a scattering matrix approach, PRB 89.155311 (2014) [Editors’ suggestion] [ArXiv1401.7461]
  3. (3) B.S., M. Hanl, A. Weichselbaum, H. E. Tuereci, M. Goldstein, L. I. Glazman, J. von Delft, and A. Imamoglu: Proposed Rabi-Kondo Correlated State in a Laser-Driven Semiconductor Quantum Dot, PRL 111.157402 (2013) [ArXiv1211.6837]
  4. (2) B.S., G. F. Quinteiro and P. I. Tamborenea: Twisted-light-induced intersubband transitions in quantum wells at normal incidence, J. Phys. Condens. Matter 25 385301 (2013) [ArXiv1309.1729] (see also blog post).
  5. (1) B.S., P. Gieschke and O. Paul, Shear Piezoresistance in MOSFET Devices Under General Operating Conditions, IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4145-4154, (2011).

Conference talks, seminars, posters

2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014 and earlier

Thesis supervision

Tuebingen
LMU Munich
UC Berkeley
FU Berlin

Teaching

at Universitaet Tuebingen
at LMU Muenchen:

Referee